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A generalized method of integral equaticl@MIE) is applied to a weakly rarefieghot so densemedium
when the distanck between the neighboring elementary radiators is already not negligibly small in compari-
son with the wavelength of light. In this paper discreteness is treated not as a conceptual idea only but as a
guantitatively measured parametei\. It was found that the extinction theorem and Maxwell’s equations
remain valid even in such conditions. A striking contradiction with the energy conservation law arising with
allowance of the radiation damping effect into the Lorentz-Lorenz formula is resolved by means of a proper
account of the discreteness of the medium. The approach developed enabled us to calculate the local field
factors and dielectric permittivity of a rarefied medium. An essential quantitative and qualitative distinction
between the gaslike, jellylike, and a cubic lattice media, customarily treated as optically isotropic, was re-
vealed. For a cubic lattice crystal an optical anisotropy is predicted. The possibility of application of the GMIE
to calculation of the integral light scattering in an irregular medium is discussed. Our results may be applied to
calculation of the optical properties of some specific types of media, such as a cooled atomic gas, composite
materials, and quantum dots structufex1063-651X97)10511-9

PACS numbds): 03.50—~z, 42.65-k, 78.20—e

. INTRODUCTION sizeb, determine the local field factdt, and enter into the
anisotropic analogues of the LL formula I, I[5]. The
What can we learn about the internal microstructure of arpresent paper is devoted to a detailed study of the influence
optical medium from macroscopic optical measurements®f a medium’s discretenesthe parameteb) on the optical
Microscopic symmetry of ordered medierystalg manifests  properties in the case of a weakly rarefied medium.
itself in an anisotropy of the refractive index. Whereas the As is evident from its derivation, the LL formula holds
internal structure of radiators is taken into account by multi-true only for a denseNA3>1, medium. Although just a
polar expansion, neither radiator size nor lattice grain sizéliscreteness gives rise to the local field effects “incorpo-
ever enters into formulas for the refractive indexf a me-  rated” into the LL formula and anisotropic analogues, these
dium. In optics such an approach is usually well-groundedormulas reveal onlyhe presencef a medium's discrete-
because of the smallness of these sizes compared with tf€SS, but not its “magnitude’b. Over the last years, an
wavelength\. Thus, according to the classical Lorentz- Nterest has emerged in “essentially discrete” megiaoled
Lorenz (LL) formula[1,2], the optical properties of an iso- &toMmic gad6], photonic band gap7] and quantum dotgs]
tropic medium depend merely on the product of a derisity structureg when the distancels between the radiators are

of the radiators and the polarizability of an isolated radia- &Ogrggggglt;e(?begqalgrfgergp;:gg dWItirrl :Eg Xvoat:/rilsr:)?‘ma self-
tor. This paper is the third in a series of papers devoted to the ~ » & probie eady . :
study of the the connection of the macroscopic optical propgonsstent description of an ordinary dense media. This paper
erties of the medium with its microstructure, i.e., geometricpursues a line of thought by Planck and Mandelstam, who

) - ) ’ first considered a problem of the proper account of the radia-
disposition of the elementgry radiators and the distartices tion damping(RD) effects in optically homogeneous discrete
between them. In the previous two papers we develqped thr‘?]edia[g] (for posterior considerations see Reffi$0, 11)).
fundamentals of the theory and applied method of integraRea|ly, in accordance with the general concept and concrete
equations(MIE) to an arbitrary nonlinear and anisotropic gerivation of the LL formula for a dense medium, it seems
dense mediuntpaper I[3]) and some two-dimensional and reasonable to substitute into this formula total complex po-
quasi-two-dimensional probleméaper Il [4]). In those |arizability a=a'+ia” of an isolated elementary radiator
cases only the unitless geometrical tengoof a lattice and  with allowance for the contribution of the RD inte”, as
the radiator's polarizability tensak, but not a lattice grain  was made by Hippdll2]. However, such a natural procedure
of an account of the RD effects leads to a paradoxical con-
clusion that the existence of the nonabsorbing dielectric crys-
*Permanent address: Automation and Electrometry Institutetals in frameworks of the classical molecular optics turns out
630090 Novosibirsk, Russia. to be impossible[13]. It is worth mentioning that the
Electronic address: ghiner@gate.fapema.br Clausius-Mossotti formula, the electrostatic counterpart of
TCorresponding author. Permanent address: Semiconductdhe LL relation, does not pose such a problgid], since in
Physics Institute, 630090 Novosibirsk, Russia. Electronic addresslectrostatics there are no RD effects. As will be shown in
gregory@dsif.fee.unicamp.br more detail in the course of this paper, the correct consider-
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ation of the medium’s discreteness solves the problem. It
occurs that for self-consistency of the molecular optics it is

indeed necessary to take into account the RD effects. How- prg
ever, such an account of these effects by no means implies & * S NGl B e
naivedirect substitution of the imaginary part of (or tensor ; ;

polarizability &) of an isolated oscillator into the LL formula
(or its analogs for an anisotropic medium, see | andThe
point is that the RD appears due to retardation in the process
of emission of an isolated radiator, so that proper account of
all retardation effectamplies that their allowance be made
in the interparticle interactions effecias well In other ¥
words, it means breaking with the generally accepted elec-
trostatic approximation in the derivation of the LL formula. (0,0,0)
The established way of dealing with the LL relation is to
Cqivalent homogeneaus medium to the microscapic param: F1G: L A SPIing procedure for & cubic latice.denotes the
. : . osition of the primary atoms of the initial lattice amdtands for
eters of this medium. It is the essence of the numerous tecl- _ _ A
niques developed for description of discrete media after th&'® secondary atoms of the splitted lattice. Vectostands for the
pioneering work by Purcell and Pennypacker, where a contth atom posmqn, vectob;, stands for the position of thg'th
tinium medium was replaced by an array of point entitiesSécondary atonij’ changes from 1 to)8
(dipoles [15]. Mathematical sophistry aside, these ap- ...
proaches as well as the equivalent integral forms of MaxWhereR;=r;—r;, R; is the distance ofth radiator from
well’'s equations allow us to more or less exactly restore thehe LS center, which stands as. Furthermore, we will ac-
point-polarizable entitiegatomic polarizabilitiesfrom mac-  count for all such additional terms. The second problem is
roscopic considerations. connected with out-of-LS radiators. For a rarefied medium
A MIE [1] allows us to reverse the order of the conven-one cannosimply turn the summation into an integration, as
tional approach, i.e., to deduce the macroscopic quantities @ assuming in the case of a dense medium. Really, owing to
the medium from their microscopic counterparts. The stana finite value of the parametdtb (k=2#/\ is the wave
dard MIE is the embodiment of the discrete concept anchumber of the lightthe contribution to the field in the center
affords one an opportunity for self-consistent description ofof the LS due to of the phase difference between two dipoles
all optical phenomena in the dense media. By virtue of thesituated outside the L$emains substantional at any dis-
medium’s “compactness” one yields two beneficial advan-tances of these dipoles from the centein particular, two
tages:(i) the possibility to consider all the radiators inside dipoles at point§ andj’, with a finite distanceés between
the Lorentz spherélS), with a certain radius, as being  them, produce at any observation point, for exampl¢ a
identical, so that polarization inside the LS may be kept congifferent field as compared with an isolated dipole with the
stant;(ii) the possibility to replace the summation over out-same total dipole moment. To consider these dipoles as if

pf—LS radiators by an integration and thus to produc'e alktuck together it is necessary to satisfy not only the condition
integral equation. In this case compactness of the medium i§f their remoteness from the LS center

the essential factor since it allows us to impose the macro-

scopic condition of the greatness of the LS radius compared b<R;, (39

with the distanceéb between the radiatordor a crystalb is _ _

the cube root of the volume of an elementary xell but also the inequality
as>b (18 kb<1,

and, at the same time, the microscopic homogeneity condfie’

tion b<\. (3b)
a<h. (1b)  Therefore, if one intends to account for the discreteness of a

medium, one cannot simply pass from the sum to the inte-
A rarefied medium poses a nontrivial problem since bothgral. At first sight this seems like an insuperable obstacle on
of these benefits vanish and the standard MIE cannot be apeute to integral equations. However, it is possit@ad suf-
plied. Hence what is required is a judicious generalization oficient) to find the differencebetween such a sum and the
the MIE approach. Here we will develop such a theory. Tointegral and so to turn the summation into an integration. For
overcome the first obstacle—nonidentity of the radiators inthis purpose we have developed a special procedure of “ra-
side the LS—we took into account the variation of the po-diator splitting.” Its essence is the following. We split each
larization inside the LS: of the elementary radiators into eight smaller ones to obtain
a lattice with the period/2 (see Fig. 1 After that we ex-
o a oo - - 1 R . pand the field from the “split dipoles” at the observation
Prj) =P+ (Rj-V)Pr—i + 5 (RyRj :VV)Prg oo, point by the parameteb/R;, and calculate the difference
(2)  between local field€’(r,) from the lattices with periodb
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andb/2 and the same volume densities of the dipole momenjyhereP(r’')=Np is the polarization of the mediuti, and

(polarization P. By iteration of this procedure, the differ- | are the contributions from the dipoles inside the LS,
ence of the acting fields from an initial lattice with grain size G(R)=e'*?/R is the Green function of a scalar wave equa-
b and a similar lattice with an arbitrary smallis calculated. tion R=r—r’, ands is the boundary of the medium. Equa-

It splyes the problem of t.he passage to an integral equatior (5) differ from the earlier deduced integral equations
This is one of the most important end results of the devel- - > - o
(see I, I) by the additional term&, andH,,, arising due to

oped theory. - . -
Section 1l deals with the earlier developed GMIE modi- the procedure of splitting and accounting a finite value of the
parametekb (see Appendix A

fied for the rarefied media. In Sec. Ill the role of the RD o . .
effects is considered, whereas in Sec. IV we calculate the 'he SPIitting procedure produces in E¢S) some addi-
optical properties of the regular and random media. For simtional surface integrals with respect to the polarizafand
plicity we limit ourselves, for the most part, to the case of anits spatial derivativies. For simplicity, we limit ourselves to
electric-dipole medium. The calculations for the electricthe simple case of a medium with the “blurred boundary”
quadrupole and magnetic-dipole media, although much morésee discussion in the paper | and Sec. V of the present
cumbersome, can be done in a similar way. Such results afg@pej when these integral terms go to zero. The general case
present in Sec. V. Section VI states that the extinction theols considered in Sec. V.

rem and the Maxwell equations remain valid for a weakly ~First, we write the expressions for the contributidis
rarefied medium. Section VII for a summary and interpretasng H . with allowance of thekb terms:

tion of the results. Several Appendixes contribute technical

details necessary for the clarity of the presentation. EU: Yo P+ b2y,:(VV P), (6a)

Il. GMIE APPROACH MODIFIED H,=ikb?yy1:(VP), (6b)

FOR A RAREFIED MEDIUM A~ A ~ . . .
where,yq, ym1, andy, are the dimensionless second, third,

Let us consider the simplest case of a medium constitutednd forth rank tensors, respectivégee Appendix B These
from identical particles in the equivalent conditions. Such aensors are determined by the spatial distribution of the ra-
medium has a center of symmetry. Later this fact will bediators (for example, the geometry of a crystalline latjice
taken into account under expansion of lattice sums. The cor-or a noncentersymmetric medium E¢8a and (6b) must

sideration of more complicated noncentrosymmetric medide complemented by the terrys: (VP) andikbyy,- P (see
will be given elsewhere. Later on all the calculations will be|), For a random medium and a cubic lattice the tensors are
performed to third order in th&b parameter since these calculated in Appendix B. For our paramount terévosand

(kb)® terms describe the RD effect. - h imil oA, dix A:
The total account of the discreteness is included in thé_|b we have similar expressioriappendix A):

fundamental equations of the molecular optics for electric

bl sl Ep=(kb)?Yp- P+b%yy,: (VVP), 7
E’(r,) and magnetidd’(r,) local fields acting on a radiator b= (kD) "o 7ozt ( ) (73
at the pointr; with the dipole momenp(r,) [1]: Hy,=ikb2yyp; (VP). (7b)
o _ . eikial Further, we will proceed on the lines of the generalized
E’(r|)=Ei(r|)+2 VXVXp(rj)) ==, (4@ method of integral equation&SMIE) developed in | and 1.
= |ri_ i Namely, let us rewrite Eq¥5) in terms of new variableg
oy andH [compare |, Egs(10), and II, Egs.(13)]:
. e - - im'el
H (rl):Hi(rl)_|kj§#:| VXp(rj) T (4b) E=E'+ B,-P+b%B,:(VVP), (8a)

j |

I 5, . H=H'+ikb2By.:(VP). 8b
Here E;(r,) andH;(r,) are the strengths of the electric and Pur:(VP) (80)
magnetic fields of an incident wave at the paipt j, andl At this stage tensorsy, B,, and By, are still free param-
denote the indices of the dipoles. _ eters. As was shown earlier in | and 11, under a certain choice
By use of the splitting proceduresee Appendix Awe  of the values of these tensors and those variables formally
pass from the summation in E@f) to the integration outside introduced in a remarkable manner acquire {hteysical
of the LS and come to the integral equations sense of the macroscopic fieldsaBd H. However, in con-
trast to | and 11, there are additional termsb)? which now
N .. R R N > . . . . =
E’(r)=Ei(r)+Eg(r)+Eb(r)+f VXVXPGd, play an important role. Theethlrd order termsVV VP for
o the electric field andkb®V VP for the magnetic field, along-
(53 side the first order onesVP andikbP, vanish due to the
symmetric properties of a medium. Taking into account I,
Egs. (11, we may factor the operatdf X VX outside the
integral sign while keeping an accuracy up to tHeb)@

(5b)  terms(see Appendix € Suppose now that the variabl&s

e e 3 I
H’(r)=Hi(r)+Ho(r)+Hb(r)—f ikVxPGd%’,
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and H satisfy not only Eqs(5) but also the specific wave

equations with nonzero right-hand sides:

VXV XE—KE=4mk?P, (9a)

VXVXH—k?H=—47ikVXP, (9b)
Using the same method as in | and$ke also Appendix D
we transform volume integrals in Eq) into the surface
ones and thus arrive to the equations

A. V. GHINER AND G. |. SURDUTOVICH

~y ™ 2
(Ym1)stp= — 3 (ka)“€stp, (11e

(119

Heres,t,p,q denote the Cartesian component numbers and
€stp IS the antisymmetric unit tensor of the third rank. Ten-
SOrsyg, ¥3, ¥ arise from the integrals in Eqé5) due to

the factoring of the operatdf X V X and the reducing of the

50 + Yo+ (kb)2Y0— %6 .P integrals to surface ondsee Appendixes C and)D
Now let us choose the values of free parameﬁa{sﬁz,
S N . VXVX and,BMl to satisfy Eqs(9) and(10):
0Bt vat Y2 v2) HIVVP)HEi+ —— o ) in
N Bo=— 73 (kb)2y§,2>+ T (Kb)X(b—2Tr b)
. 4G JE . o
xf = G—+Gn2V’ = |d?ry =0, )
Z 3
(109 + 3 i(kb)”, (129
ikb?(By1+ Yt Yoms— V)i (VP) +Hj . 8
VXV X 2G P (ﬁZ)stpq (72 )stpq 105[ (®)st5pq+3(q))sq5tp
> f I:i——G—+GﬁEV’-ﬁ)d2F2:5, . .
47k s dv dv —4( D) 5qT 6(P) pgdsi]
(10b) ™ .
R . . + 35 (585t8pq~ SsqBip) Tr P (12b
whereV’'=4/dr' andny is the unit vector of the outward
normal to the boundary, 44
- _ 0 e . A -
(70)5( 70 st (1139 (BMl)stp__('yfvl)l)stp"'? §Sstq(q))qp_8stp Tr (I)}
T 87 (120
Yo=— (ka)’— —-i(ka)®, (11b K. .
3 9 N LA 3(np)s(n))i— 85t
. (7)s=lima_... gl ——a . (2
-, T il
(Vz)stpq:? (ka)z 5st5pq_ § 5sq5ip): (1109
1 U5% (AN (R o+ s A
A . 2m O (V) s=limy ., E ‘| — = = SK_J t SI—?Azﬁst ,
'yéEVVP=?(ka)2 VV~P—§AP), (119 1* it
(12¢
|
GO _iim LOG" 3 dM)p(Ri)a= (M)i(Mpdeq 27 o - 1 (126
Y2 Jstpq A=l o “ Kjl 5 st%pq™ 3 9sq%p] |
Ki<A = >
. . 2m &0 (g
(')’Ml)stp:l'mA—wc ?Azsstp_ssqp E JIE—J (129
J#I jl

where K;;=R; /b, A=a/b, and @ is the unitless second- E, which satisfies the wave equati¢8a), and the micro-

rank tensor that arose due to the splitting procedwee
Appendix A, Egs(A4) and(A6)]. In formula(12g the sum-
mation over indexq is implied.

Equations(10) give an extinction theorem in the same

form as in the case of a dendeéy— 0, medium[see |, Egs.
(20)]. Furthermore, by inserting Eq&l1) and (12) into Eq.

(8) we obtain the relationship between the macroscopic field E=E’ +,@- P:

scopic(local) field E’ acting on a given elementary radiator.

A similar procedure is done for the magnetic field In the
routine case of a plane wave polarization this relationship
takes a customary form,

(13)
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however, tensof:’, generally speaking, now depends on the

o)
wave vectork of the plane wavdsee Eqs.(8) and (12)]. po'=~ 3 Yo (160
Therefore, the discreteness of a medium gives rise to a spa-
tial dispersion of a certain type. R T o- .

If one knows the microscopic properties of the elementary BBZ)ZE (P—2Trd)— ¥y . (169
radiators, i.e., the relationship of polarizatiénto the local
field E’, then Eq.(13) allows us to obtain the macroscopic Equation(16a reveals the surprising fact that with an ac-
material equations. So, in the simplest case of a linear mesount of a medium’s discreteness the dielectric permitivity
dium with the given polarizability tensoi of a separate (and, therefore, the refractive indekave negative imagi-
radiator we arrive at the well-known relation between micro-nary parts, i.e., provide for amplification in a passive me-

scopic polarizabilitiesa. The imaginary parts” of the
P=N&a-E’. (14)  dielectric permittivity in Eq(168 may be rewritten in terms

of the parameteNb® as
As a result, Egs(9a), (13), and(14) give the dielectric per-

mittivity tensor e with the allowance of a discreteness of the - 8w ~ 2
N ediun ore 8=~ 3 ND%3(a- )2, (16f)
e=1+4mNa- (1+,23- Na)~ %, (159 For any regular lattice the paramedéb?® is equal to unit due
o A to the definition of theb, whereas for the gaslike medium
B=Bo+b2B:KK, (15b)  this parameter is less then unit but may be fixed to unit for

any medium by decreasing of a temperature. Therefore, this

wherek is the wave vector of the propagating plane wave. Inamplification does not relate directly to the value of the pa-
the limiting casekb— 0, Eqs.(15) are reduced to the former rameterkb so that the problem of violation of the energy
result[see |, Eq.(28)]. conservation law exists also fdensekb— 0, media as well.
Now take notice of the nonlinear optics. The local field At first sight this seems paradoxical. To clarify the prob-
factor fp, which relates the right-hand part of the macro- lem let us consider the limiting case of an “ultrararefied,”
scopic wave equation with nonlinear polarization, may bekP— ., medium, i.e., the case of an isolated radiator. First,
obtained in the same manner as in a dense medium case alculate the total flux of the electromagnetic energy from
R R such a solitary dipole with a dipole momqﬁ1t
fo=(1+p-Na)~ L. (150 o
p=aE, (17a
Ill. THE ROLE OF RADIATION DAMPING (RD)
o a=a'+iad", (A7b
Let us analyze Egg15) taking into account the smallness
of the parametekb. It may be rewritten in the form where microscopic polarizabilityx is an arbitrary scalar
- _ function of the field and frequency under irradiation of a
8—1=(8—1)-|1 (kb)z(,é(Z)Jr,é 99) o plane monochromatic wave. The result is given by the flux of
e—1=(gp— 1) |1~ 0 2:49)- —— N '
4m the Poynting vecto

i
— — (kb)3(gg—1)?, 16 . C .
g (KD (e0~1) (163 = —— RgEXH], (183
8
whereq=k/k and the dielectric permittivity tensax, in the

limiting casek—0, is given by through a surfac&, of a sphere of an arbitrary radius around

the dipole. A direct integration in the far-distant zone gives

80— 1=4mNa-f . (16b) 3 L
A
Here fz s 3 P 2mP
F 500 NAY-L 20, 01 = k—3| |2——" |E|? (18b
fpo=(1+By "Na) "=1-y"" ppe “e\3 e 2 '
B go+2 . go—1 Here the first term corresponds to the radiation of the dipole,
3 o A (169 \whereas the second term appears due to the interference of

the dipole radiation with the incident fieldThis result may
is the local field factor in this limit 1[5]. In the case of a be obtained in the course of more intricate calculations in
cubic lattice or random medig,=0, one comes to the con- any, not only far distant, zone and for any type of the mono-
ventional LL limit. ) chromatic wave. In the last cagewill be an amplitude of
The tensorg8?’ and B{) are given by the relations the electric field at the point of the dipole’s dispositjon.
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Thus again the problem of energy conservation arises nowptics. We maypostulatethe necessity to take account of an
for an isolated oscillator, since if one ascribes to a passivescillator’s self-action. Mathematically it means extension of

frictionless dipole the purelyeal polarizability, then the to-
tal flux of energy from such a dipole will never be zero. As

the summation over all oscillators, the proper one inclusive.
The advantage of such an approach was demonstrated by

long as a passive oscillator has no internal sources of enerdyandau and Lifshit16] as applied to any charged system

we fall into a flagrant contradiction with the energy conser-
vation law. Therefore, one must attribute to the polarizability
of the oscillator the imaginary term”

2
o= 3 k3| a|?. (180
One may consider it as a direct consequence of the optic
theorem which connects the total cross section with the for
ward scattering amplitude. If we employ this formula to the

with sizes much less then the wavelength. They showed that
for the calculation of the RD force it is sufficient to include
the propagation delay effects into the ordinary Coulomb
force qE acting on the charge in the external fielcE. It
takes the form of the additional foragErp, whereEgp is

the first nondivergent term in the expansion of the delayed

‘Qotential in terms of the parametefc. In our technique it

means that under calculation of the tensgr(see Appendix

B) for any geometry of the lattice one must expand the sum-

mation in Eq.(B3b) for the terms proportional to(kb)? also
to the proper ' oscillator. Therefore, the term-i(kb)2 in

Eqg. (129 for local field factor,fa’o turns to zero and, as a

model of a harmonic oscillator with a friction caused by the
well-known radiation damping forcézp

. 2 ., v result, the macroscopic and microscopic fields remain related
fro=—39°K" ;—a (18d by the purely real factor. This is a generalization of the Man-
delstam cancellation effect in the case of an arbitrary aniso-
2 2_ 24900l tropic medium.
—a' +ia"= a ‘:0 (2”2 @ RO 5, (180 Summarizing, we have two equivalent methods for the
M (wp— @)+ (2wl'rp) calculation of the dielectric permittivity of a regular medium:

(i) one may use Eq16a and introduce into it the RD term
app [see formula(18d)], or (ii) under calculation of the ten-
sor y, one may extend the summation procedure over all
radiators, the proper one inclusive. In this case the final re-
sult does not require any additional account of the RD effect,
a does not acquire an imaginary part, and the dielectric per-
mittivity remains real. Although both of these methods lead
to the same result for dielectric permittivity, the second ap-
roach seems to us more suitable, in particular, for analysis
f the nonlinear effects.

where v is the velocity of chargew is the resonant fre-
quency, and

o q2k2

RD— 3mC1

(18f)
then Eq.(18¢ is satisfied identically. This result is a direct
demonstration of the necessity of the RD account for a self
consistency of classical molecular optics. However, it has &
broader sense. Really, E(L89 was deduced without any 0
concrete assumption about the internal structure of an oscil-
lator. Therefore, it holds true for any type of oscillator, in
particular for a nonlinear oscillator when the effects of the
harmonics generation type may be neglected but the depen-
dence of the polarizabilityx on the intensity|E|? is still Generally speaking, any random spatial distribution of the
substantialas in the case of self-focusing effects, ptc. particles is characterized by a set of the correlation functions
How are these results for an isolated oscillator related télescribing the relative probabilities of their positions. Here
the molecular optics approach in the broad sense and to the Will emphasize a distinction between two cases of the
Lorentz-Lorenz formula in particular? From this direct elec-centrosymmetric random structures—gaslike and jellylike
trodynamical consideration it is getting evident that even inmedia—as well as their characteristic difference from a regu-
the case of a “frictionless” but charged oscillator one mustlar cubic lattice.
alwaystake account of its losses. However, it must be done
not in the form of substitution of thex” term into the
Lorentz-Lorenz formula, as it is done in some classical text-
books[12], since it leads to the appearance of the physically The simplest model for the description of random media
groundless “intrinsic absorption” in any homogeneous di- with finite particle sizes is a model of “hard spheres,” which
electric medium. Such a substitution should be done, in facpperates with two parameters—densityf the particles and
into Eq. (16a. Then it meets the situation: in that way the a minimal possible distandebetween them. In such a model
propagation delay effects related to the phase difference béhe two-particle probability of finding particle j* at any
tween the neighboring oscillators is taking into account. Inpoint of the volume, except the regid®, <b around the
particular, for any regular latticevhen Nb®=1) the effec- particle “l,” is constant, while inside this region this prob-
tive “amplification” due to the collective interactions ex- ability is equal to zero. This model has some relation to the
actly cancels the RD losses. This Mandelstam’s result for thease of a cooled trapped resonance gas, when due to the
regular isotropic mediunfMandelstam cancellatioris the  repulsive forces atoms cannot approach each other nearer
main point of his basic considerati¢f]. than a certain distancgl7]. For a cooled atomic gas the
There is another way to solve the problem of the propeminimum distanceéb depends on temperature, detuning, in-
account of the RD effects in the framework of the moleculartensity of a resonant field, etc.

IV. THE OPTICAL PROPERTIES
OF HIGHLY SYMMETRIC MEDIA

A. Gaslike random medium
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A gaseous medium approximation implies that the condi- A7Na

. 2_ 1= _
tion no—1 1-(47/3)Na’ 23

3 <
Nb'<1 (19 The contribution of discreteness into the dielectric permit-
is satisfied and so all multiparticle correlation functions maytivity is proportional to the factorkb)?. The absence of the
be factorized with an accuracy up to this parameter. Aftedinear kb term is occured through the symmetric properties
averaging over a statistical ensemble, the local field actingf a medium[see Eqs(6)] and radial dependence of the
on the particle 1" is equal to the field of a continious infi- dipole radiation[see Appendix B, Eqs(B1la) and (B2a)].
nite medium with a spherical cavity of radibs centered at Really, due to the factor (2ikR)e™*® the expansions of the
the pointr,. Therefore, one may replace a sum by the intefadiation fields have no linear terms. The first nonvanishing
ddterm (kb)2 describes the RD effect. On the other hand,

gral, in this case without any additional splitting procedure© !
[i.e., in Eq.(5) one ought to put termE. andH equal to for the fixed values of the parametdrsand N and a small
€., . X b b

zerd.. So. in Eqs(12) tensord=0 and for the tensory we value of the parametel«, the effect of a discreteness is
T - . roportional to 2 just as it takes place for the collective
have formulagB5a) and (B5b) of Appendix B. As a result, brop N P

th lationships(8) bet the local and . effects in dense medium. The absence of the lidkarterm
he relations ips(8) between the local and macroscopic is not accidental. It represents the fact that in the limit 0
fields acquire the form

the distinction between local and macroscopic fields disap-
o 4o 2 1 R pears and, therefore, the differencel must tend to 4Na.
E=E' - (? [1—(kb)?]+ 3 iks(ﬁ— b3) ] P Note that Eqs(22) have a sense only in the situatiaith a
propagating wave, when such a wave really exists. In other
. words, it is a question of the validity of the Maxwell equa-
AP), (208  tions (and also wave equationsBecause of the probable
origin of a scattering in a discrete rarefied medium the in-
o variability of the Maxwell equations is not so evident. For-
=H’'— —— ikb2V x P. (20b) tunately, it is possible to demonstrate that the Maxwell equa-
3 tions remain valid in this situation as welsee Sec. V)

Here terms with the spatial derivatives correspond to a spaEma"y’ the negative sign of_the discrete term re"e?"s the
ppearance of nonzero phases., delay effectsin the in-

tial dispersion arising due to a discreteness of the mediunt. . . . : .
P 9 eraction of neighboring oscillators, which leads to the at-

For a linear isotropic mediumR=NaE') from Eq. (208  tgnyation of the collective effects. One may expect that for
and Maxwell equatiorV - (E+47P)=0 (see also Sec. VI large values of the parametkb the allowance of the dis-
we obtain creteness would change to a signeefl, in particular, the
appearance of a region of the effective anomalous dispersion
1+ am Na[2+ (kb)2]+ 2 ik3a(Nb3—1)]V~|5 [18]. The allowance of thek(b)3. terms leads to the factor
3 3 (1—Nb% in Eq. (229. For an ideal gafNb®=0 and we
A come to the result of Ref.12], whereas for a lattice this
+ — Nab?AV-P=0, (219  factor turns to zero and one comes to the effective Mandel-
15 stam cancellatioinow proved for any anisotropic mediym
) ) ) o . For the nonideal gas this factor is not equal to zero and so
Since in a dense medium limiting case we haveP=0,  apsorption of the medium depends on the interparticle inter-

I

then from Eq.(213 it follows that actions and the temperatuteompare with[10,11] where
- 323 such an absorption is expressed in terms of the medium’s
V-P~Nak®b"P. (21b density fluctuations

Therefore, the terb2VV-P in Eqg. (209 is of an order of
(kb)* and may be omitted. This fact allows us to find the
refractive indexn (dielectric constank) of a gas and the The previous result is valid under the conditions of the
local field factorf: inequality (19). For a jellylike random medium the corre-
sponding condition is

B. Jellylike random medium

2
ng—1

3

2
No
1+E

(kb)? Nb3<1, (24)

s—1=n2—1=(n3—1)[ 1-

(228 the oscillators relative to each other and an average distance
between two close spaced oscillators is comparable with the
3( 1)“ minimal distanceéb. Now a passage from a sum to the inte-

ik3 ( 1)“ which means that we have a uniform angular distribution of

2 .

ng ik
+_
1 10

n3+2
B 2

fo=—3 (kb)?+

b3—ﬁ gral requires a special splitting procedure. To satisfy the ran-
dom character of the distribution function we must average

the tensor® in Eqgs. (12) over all orientations of a “split

where the refractive inder, without allowance for the de- cube” to imitate the random lattice. As a result, the terdor

lay effects k=0) is given by the LL formula acquires the following fornisee Appendix A

3
(22b
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~ st For a lattice constituted from the linear isotropic oscilla-
(P)st=54- (29 ors the ternC,b2VV - P in Eq. (278 may be omitted for the
same reason as in case of a random medium. Then the rela-
After calculations similar to those for the gaslike medium wetionship (278 between microfields and macrofields acquires
come to the integral equations with modified teréls and the form
H, (see Appendix Band the additional termg, andH,,

which are now not equal to zero. As a result, we obtain the
integral equations of the same form where, instead of the real

scale parametdr, the renormalized effective parameter

9?Pg
C;AP,+Cy W

S

(289

iy

3

Es=E.+ +C4(kb)?|Ps+b?

b=b/v3, (26)

enters into all terms with the exception of the last term in EC“n the case 0’5: Naé tensore in Eqs(15) has a diagona]
(229. Therefore, the magnitude of the scattering essentiallyorm ¢ ,—¢ 5,,. For the plane incident wave we have
depends on the concrete model of a liquid. Equati@@—

(22) remain true for jellylike media as well. However, due to

renormalizatior(26) the spatial dispersion properties of these n2—1
two “differently” random media with the same parameter ¢ —1=(n2—1){ 1+ ——— [(Ca+C,4q2|ed)n3—C4]
kb will differ three times. A threefold decrease of a spatial 4m

dispersion effects for a jellylike medium may be clarified by

the following qualitative consideration. For a random me- X(kb)z), (28b)
dium the influence of the discreteness is determined by a

certain weighted average distance between two closed

spaced oscillators. Since the upper limitN =2 of such an

averaging in the case of gaslike medium is more then for avhereq is the unit vector in the direction of propagation
jellylike medium (the lower limitb is the samg a “gas-  —k/k and e is the unit vector of the polarization of light.

And so a cubic lattice with allowance fe&ib terms has rather

; . Mintricate properties. Under propagation along any of the crys-
would have more resemblance to the properties of a den llographic axes the terrq§|e5| equals zero, so that,,

medium, i.e., to the spatial dispersionless LL formula. . . . .
P b =e&yy=¢&,, and the medium looks similar to the isotropic

one. The same isotropys,.=&,,=¢&,, take place under
propagation of a wave along the diagonal of the cube. Fur-
A specificity of the regular distribution of oscillators we thermore, in the direction along a diagonal of a fakg,
consider in the frameworks of a simple cubic lattice model.= ky#k,, a cubic lattice looks similar to a medium with
The relationships between macroscopicand H and local  tensor components,,=¢,#&,,, i.6., as an uniaxial crys-
E’ andH’ fields in this case follow from Eq$8), (12), and tal. Finally, in a general case, from the optical view point, a

C. A cubic lattice

Appendixes A and B: cubic lattice looks similar to a biaxial crystal.
Bt | — 2T 4 (kD)2 Pot b7 Co(VV - B)ot CoAP
s= s 3 't s 2(VV-P)st CoAPs V. THE ROLE OF DISCRETENESS IN ELECTRIC-
2P QUADRUPOLE AND MAGNETIC-DIPOLE MEDIA
S
+Cq axZ |’ (273 There are two reasons for a special consideration of such
media:(i) First, although in linear optics electric-quadrupole
o1 R and magnetic-dipole radiations are small compared with a
H=H'- > C,ikb2V X P. (27b) electric-dipole, in nonlinear optics their contributions may be

comparable or even more than the nonlinearity due to di-

pole’s nonharmonicity(see, for examplg,19]); (ii) second,

in a number of cases impurities in composite matefia®§

may be considered as elementary radiators and the MIE ap-

proach may be applie@1]. For a regular arrangement of the

impurities, and when their sizes are comparable with the in-

terimpurity distances, the multipolar moments of those im-
urities start to play an important role. The following con-

The numerical constants of an order of unfyC,,C3,C,
are given in Sec. IV.

The macroscopic properties of a cubic lattice differ from
those of the random media not only quantitatively through
the C factors, but mainly qualitatively. The last non-vector-
covariant term in Eq(273 violates isotropy inherent to the
random medig. Consequer)tly, .the principal opportunity Osiderations apply to both of these situations.
the manifestation of the directions of the crystallographic ) ) -
axes of generally accepted isotropic cubic crystals in the Starting from exact sum-type equations for local fieds
macroscopic optical phenomena do arise. For a two@ndH' acting on the elementary radiator at painwith the
dimensional system of quantum dots,kdi~ 1 the similar quadrupole momen and magnetic-dipole moment[see I,
manifestation was observed receri}. Eq. (4)]
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E'(F,)=Ei(F.)+; [VXVXP(r)G(Ry)— VXV

XV-q(r)G(Ry)+ikVxm(r))G(Ry)],
(299

H'(F.)zﬁi(F,)+2l [VXVXmM(r))G(R;)+ikV
j#F

XV-q(r))G(Ry)—ikVXp(r;)G(R;)],
(29b)

and using the above-described splitting proceddmpendix
A) we come to the integral equations for local fiellsand
H’ with an allowance of thekb)? terms

E’(r)=Ei(r)+EU(r)+Eb(r)+f (VXVXPG—-VXV
xV-éGHkaMG)dV'—bZJ (D:nsV')VXV
3
XPG-VXVXV-QG+ikVXMG)d%ry, (303
H’(r)=Hi(r)+H,,(r)+Hb(r)+f (—ikV X PG+ikV
xv-ée+v><v><|\7le)d3*'—b2j (D:nsV')
3

X (—ikVXPG+IkVXV-QG+VXVXMG)

xdry . (30b)

Here Q:NE] and M=Nm are guadrupole and magnetic-

dipole densities, respectivel(R;;) =e*Ri/R;, and other
notations are the same as in E9.and(10). The additional

“discrete” contributions of the LS exterior in the most gen-

eral case may be written as

Ep=b2[k?¥p0- P+ ¥p2: (VVP) +k2Ep1: (VQ)

+ &p31 H(VVVQ) — ik Ypm:(VM)], (313
Hp=b2[k23p0- M + Yp2: (VIM) +ik3¥pm0:Q
+ikéEppa: (VVQ) +ikYomr: (VP)]. (31b)

Dimensionless tensorg, and %b are determined by the lat-
tice geometry and may be expressed in terms of the “split-

ting tensor” ® (see Appendix A The contributioni, and
H, of the radiators inside LS can be written as

E, =% P+b%%,: (VVP)+ & (VQ)+b%&: :(VVVQ)
—ikbZyp1:(VM), (3239
H,= Yo M +b2%,: (VVM) +iképo: Q+ikb2Ey,:: (VVQ)

+ikb2yy1:(VP). (32b

6131

For some types of lattice geometry the dimensionless tensors

y and ¢ are calculated in Appendix B.
Note, that for a medium with not so sharply outlined

(“blurred” ) boundary theP, Q and M densities on the
surface turn to zerg¢see |, Sec. )l so that the surface inte-
grals in Eqg.(30) vanish. However, we will conserve these
integrals to remind that the consideration of discrete effects
for the media with sharp boundaries requires a special treat-
ment.

Now, employing a general idea of substitution of the vari-

ables(see Sec. )| we introduce the new variablds andH
in the most general, consistent with the requirements of a
symmetry, form

E=E’+ By P+b2B,i (VVP)+ 7,: (VQ)

+b255: 1 (VVVQ)—ikb2Byy:(VM), (333
H=H+Bo-M+b2B,: (VIM)+ik yo:Q
+ikb2 22 (VVQ) +ikb2By1:(VP),  (33b)

where the tensorg andjy are still free parameters, just as in
the case of the tensog in Egs. (8). Then again, as in the
case of the electric-dipole media, suppose that the new vari-
ables satisfy, in addition to Eqé&30), the wave equations in
the following form[see |, Eqs(12)]:

. . A .
V><V><E—k2E=47rk2(P—V~Q+EV><M , (343

- . .
VXVXH-k?®H=4mk? M+E

< N
VXV-Q- 1 VXP

(34b)

As was shown in Appendix C one may factor an operator
VXV X outside a sign of the integral. Then, similarly to the
case of the electric-dipole medium, one can transform the
volume integrals in Eqg30) into surface integrals and come
to the equations of the same form as Ed$), but now with
additional, proportional t®,M and their spatial derivatives,
terms. Imposing the condition that each group of the terms in
Egs. (30) with the same spatial dependence must vanish in-
dependently, we define the values of the parameiefpa-
rametersB are given by Eqs(12)]

- 8T . . ””
i 04t &= 1= (kb)“&py, (35a
;73:%:;_%3_%%’ (35b)
%MO:_%MO_(kb)Z%bMOa (350
%Mzzéﬂﬂz_%Mz_%sz- (350

Here

(84)stpe= sadtp (350
8,:VQ=V-Q, (35f)
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-, 2T 2"
51: - ? (ka) 54, (36@
-, ~ 2 ) ~
§12VQ=—?(ka )'V-Q, (36b)
-, 27 (a\?(2
(63)Stqum:7 B g 5sm5tk5pq_ 5st5pk5qm )
(360
~ ~ 2 ~ ~
b2&L: {(VVVQ)=—= a? gAV-Q—VV.V-Q),
(360
2 2
(gl\/lz)stqu 5 B 8stkfqur (369
A ~ 2 -
bzf,’wz::(VVQ)Z 5 a’VxVv.Q, (36f)

whereegy is an antisymmetric unit tensor of the third rank.

Such a choice of the parameteggsand 77 guarantees conver-
sion of Egs.€10)-type relationships into an extinction theo-
rem:

. *aG JE B
Ei+V><V><f P G—+Gn2V

Q n2+k[MXn2] bZCDHEV’)

R A
x| PG-V-QG+ -

kVXMG)Jd2F2=O, (379

ﬁaG
41k

. 9H .
Hi+V><V><H G—+Gn2V’ )

i - A - - - -
—E[nz-QXV'G]-FG[anV’Q]—f—G[Pan]

i -
EVXPG

]dzf2

(37b

. . i -
—bz((I)nEV’)(MGJrEVXV-QG—

0.

As was mentioned earlier, for media with the “blurred”

boundaries th®, Q, andM surface densities vanish and an
extinction theorem acquires the universal form of I,
(21). The expressions for the fields outside the mediven

flected wavepcoincide, as usual, with the left-hand parts of
Egs. (37). Finally, by use of the Appendixes A and B, one

may write the relationships between the macroscopic and
microscopic fields for some types of media in an explicit

form.
For a random medium we have

A. V. GHINER AND G. |. SURDUTOVICH

Egs.

47
E= E+—[ 1+(kb)2]P+ bz(VV P—3

09
2 ~ ~ 2T ~ ~ N
+5 [4—(kb)?]V-Q+ = b2(2AV-Q—-5VV.V-Q)

27~ -
+?|kb2V><M,

(383
S 4 ~ L 27~ .1 .
H=H'+—[-1+(kb2M+ — b? VV-M— = AM
3 5 3
(1 -1 .
+ 27rikb? gV><V~Q—§V><P , (38b)

whereb=b for gaslike media anb="b/v3 for jellylike me-
dia. One can see the essential difference in local field correc-
tion (kb)? terms—a threefold decrease for a jellylike me-
dium.

For a cubic lattice similar relations take the form

Es=E¢+ —?7T+cl(kb)2 P+b? Cx(VV-P)+C3AP
9P| [87 ) -
+C4a_x§ + ?+3g—C2(kb) (V-Q)s
15 1 dQss
_ _ 2
+ 2 go+6 C4(kb) %
+b2| C5(VV-V-Q)+Ce(AV-Q)s
+C i E @4_2 (Vé) +AQ
7 IMXs | T ¢9Xt2 Xs s ss
d 3° 1 .
+Cg2, ngs Co Q3SS]——Clikb2V><M,
t s IXs 2
(393
4 R
Hs=H¢+ —?+Cl(kb)2 M¢+b? Co(VVMg)+C3AM,
82
+Cy ax2 +z CllkaVx P+ C,ikb2(VX V- Q)
S
‘92ka
+
C4p2k apk (39b)
where the numerical calculations 6fresulting in
Cl=—3 =1.892, (409
1 T
CZ:E 90_391"‘1—5 =1.237, (40b)
1/1
Cs=7 (g 90— 301~ ) 0.059, (400
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3 =g,=2.313, 42
Cs= (591~ 90)= — 1675, (400) 9= 9 (423
1 (1409 259
9 Jo u 01=01% 52 (— T— —) =0.0161, (42b
Cs=5|= 01— 5> —30,| — -5=21.204,  (40¢ 361 30 V3
2 2 42
o o't 1 (8309 15629 | 1780. (42
Ce=219;— 29— 159, + ﬁ=22.442, (40f) 92=0> 72\ 3 10 T = . , (420
15(gg 7 where
2\2 2 )
1
45 35 go= lim [2[6 In(2+v3)—=]| A+ >
ng 290_ ? gl+ ? 92: - 26886, (40h) Ao
m,n.k=A 1
- =2.314, (420
1/105 77 ‘ 2 24 1 2\12 ,
Co=5 | 5 01~ 500~ 5 0p| =28.905,  (40) mafc=-a (ME+NTHKT)
2\ 2 2
. 5 1 2
whereg (see ), gg, 91, andg, are the lattice sums: g;=lim{2[2In(2+v3)— g7 A+ >
A—oo
2, 024 Kk2< A2
o - m +n§+:k A 5m* 1 } k= A i
- 2 2 2\5/2 2 2 2\3/2
A 2 2se LM +KAT2 (MP+n2+K?) —m’n’kE:_A | ~ 00712, (420
=3.113, (413
, 1 4 1\?
m2+n2+k2<A2 gy=lim {2 2In(2+\/§)—§ 3T+ — A+§
go= lim | 27AZ— D (m2+m2+k2)~ 12|, Ao 3v3
A— m2+n2+k2#0 m,n,k=A m6
(41b B _
e —mm 2K 0.213. (42f)
[ m2+n2+k2<A? T
) 2 ) m*
g;= lim 5 AT— ) 22 , W ) Formulas(33)—(36) and(38)—(42) give a solution of the lo-
Azl me+nT+AT#0 410 cal field problem. Now it is time to write the microscopic
material equations connecting the densiﬁ%sQ, andM to
5 M2 12+ k2< A2 6 ] the microscopic field€’ and H. This is a problem of the
g,= lim il A2— > | . microscopic theory of an elementary radiator. As a result,
Aw| T m2inZikzeo  (MTHN7+KY) one can express all the values in the wave the E84).

(410 through the macroscopic field® and H and obtain com-

i i ) pletely self-consistent description of any optical phenomena.
Under numerical calculations a,, g,, and g, with any

given accuracy there is a problem of the right choice of the

LS sphere radius: depending on the value of this radius the VI. MAXWELL EQUATIONS

number of the boundary points, which is situated exactly on  \ye formulate the last problem as follows. How, does the
the LS surface and may be arbitrary considered as external gfiscreteness of the medium influence the form of Maxwell
internal ones, increases and their contribution to the sumgqyations in this medium? For too “highly rarefied” media,
grows. This leads to the fictitious, depending on the concretgqer kb1, this problem appears unessential since, evi-
choice of the LS radius, “fluctuations” of the results. To gently, the equations must tend to those in vacuum. But what
overcome this difficulty we assumed the procedure of anye the modifications for the caké<1, whenkb is a finite

averaging of this choice, i.e., at any given LS radius a certaiparameter although small? To answer this question we start
“fluctuation” of the radius was introduced and the results . . . = -,
from the integral equations for microscopic fields andH

were averaged. After such an averaging the results become .
independen? of the value of the radiugs. ; and go over, by use of Eq&L2), (352’ and 236)’ to integral
At the same time, we elaborated another procedure fofguations for the macroscopic fiel#sandH in the form
calculation of the sums. It consists of a modification of the 4 )
Lorentz-Cavity form. For a cubic lattice it is natural to take =_ = 47| 2, <. 3
the cubic, instead of the spherical, form of a cavity. This E=Ei+ 3 [ 1+(ka)™+ 3 i(ka)

approach leads to relationships which are equivalent to Egs.
(39 with the following modifications in Eq940) (see Ap- _ E AP
pendix B: 3

VV.P

|5+2W 5
53.

2T A (K@)2]V- O+ 27 a2(247 .
+?[—( a)]-Q+£a( -Q
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R 20 . s . VIl. SUMMARY AND DISCUSSION
—5VV.V-Q)+ — ikaZVXM+f (VXVXPG
3 o . e i TP
A special procedure of the “radiator splitting” in the case
—v of a weakly rarefied media allows us to pass from the exact
sum-equations of molecular optitsee Eqs(29) and I, Egs.

~ ) - 37 2 N (4)] to the integral equations and so it is of a major impor-
XVXV-QG+ikVXMG)d°r'—b E(CI>.n2V ) tance in all these considerations. The general idea of a sub-
stitution of the variables into the integral equations, which
X (VX VX F3G—V><VQG+ikV>< I\7IG)d2FE, corresponds to the passage from the actiﬁg,lé’) to the

(433 macroscopic E,ﬁ) fields, was found suitable not only for
highly condensed mattekb—0) but also for the weakly
rarefied media.

VV-M To outline the results let us separate the problems of the
macroscopic properties of an optical medium into two
groups:(i) the case of a medium with regular internal struc-
ture (an ideal crystalline lattice at zero temperajuaad (i)
the case of an irregular mediufgaslike or jellylike media

) R . . . and imperfect crystals or crystals at nonzero temperature
+f (—ikVXPG—ikVXV-QG+VXVXMG)d®r’ (i) In this case a self-consistent theory is developed and

7 the results can be summarized as follows.

. . R R (2) If, in accordance with the general concept, one would

—bzf (P:ns V) (—TkVXPG+IkVXV-QG+VXV  account for the RD effects by means of the formal substitu-

* tion of the microscopic polarizabilityy= o' + " of an iso-

Xl\7IG)d2F2. (43b) lated radiator into_the LL relatio[ﬁ_12]3 one arrives at t_he

erroneous conclusion about specific fictitious damping inher-

Now we apply the operators div and rot to the left-hand andE"t t0 any dielectric medium. It is going on due to the ne-
right-hand parts of Eq€43). As shown in Appendix C, these 9lection of the propagation delay effedgshase difference

operators can be insert under the integrals. The resulting ef the interaction of the neighbor radiators, related to the
pressions must be compared with Eqé3). Finally, we effective amplification. Both of these effects are exactly bal-
come to the ordinary macroscopic Maxwell equatit\;viﬂw- anced against each other. For the particular case of a homo-

out any correction of the forrdue to the discreteness of the 9EN€OUS isotropic medium it was shown first by Mandelstam
medium: [9] (Mandelstam cancellationalthough not quite rigorously

(he ignored two important factors—the spatial dispersion in-
(443 si_de the_LS and the me_dium’s discr_eteness outside it—w_h?ch
did not influence the final conclusion only due to specific
symmetric properties of the isotropic mediunThis is the
reason why the Mandelstam cancellation effects do not have
universal character and Planck’s argumentation is also rel-
evant, at least relative to a random medium. For the regular
V. (H+47M)=V.-B=0, (449  Media the validity of the Mandelstam cancellation effects is
proved up to any order in the paramekdy, up to the origin
A 15 of the B.ragg diffractior{ 14]. . . .
VxH=—ik(E+4mP—47V.Q)=—ikD== —, (2) It is shown that the physical notion of the macroscopic
¢ dt fields E andH may be deduced without any averaging pro-
(44d ceeding straightforwardly from the formal mathematical
properties of the initial integral equations.

|\7|+277 2
3 5 2

- 4 2.
H=H,+ —[—1+(ka)2+§ i(ka)®

1AI\7I +2 'k21V><VA 1v><|5
~3 mka'| g VXV-Q—3

V- (E+47P—47V-Q)=V.D=0,

. .. 1B
V><E=|k(H+47-rM):|kB=—EE, (44b)

where the definitions of quantitié3 andB are (3) The extinction theorem is deduced. For the medium
. R - with a “blurred” boundary it has an identical form to the
D=E+4wP—47V-Q, (458 case of highly condensed matter.
(4) We demonstrated, to an accuracy up kb)® terms,
B=H+47M. (45h)  that for a weakly rarefied medium macroscopic Maxwell

equations keep a generally accepted form.
In this way, the allowance of the medium’s discreteness with (5) The (kb)? corrections to the dielectric permittivity
an accuracy toKb)® terms, inclusive, not at all influence the tensore and local field factors arising due to the finite value
form of the Maxwell equations. It is by no means a self-of the parametekb were calculated. Depending on this mi-
evident result. The proved preservation of the Maxwell anccroscopic parameter there are the rarefied media with the
wave equations in rarefied medium with an accuracy up tessentially different macroscopic properties. This conclusion
the third order in the parameté&b signifies the absence of refers to a gaslike, jellylike, and a cubic lattice media. The
the scattering at least with the same accuracy. It gives thspatial dispersion of such media is calculated. For a cubic
basis to presume that an origin of the scattering in a reguldattice crystal an optical anisotropy is revealed.
discrete medium would take place in the threshold manner. (ii) In the case of a random distribution of the elementary
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radiators or with allowance of the thermodynamic fluctua-present approach which may be complemented by the gen-
tions one should calculate the local fields for a given spatiaéralization of the Frohlich theorem for an isotropic medium
distribution of the dipole moments and only after that per-[24] to the case of the anisotropic med2b].

form the averaging over an ensemble. In this paper we oper-
ate, in fact, in the other way: wiaitially average the multi-
pole moments and positions of each particle over all possible
states and only afterwards calculate the acting fields. It is It is a pleasure to thank L. Mandel and G. S. Agarwal for
clear that such a procedure is true only in the case of suffithe discussion of the RD problem at the initial stage of this
ciently rapid processes of “self-averaging” over internal andwork, S. G. Rautian for drawing our attention to the history
external degrees of freedom of each particle. This situation isf the problem, and Patricio Impinnisi for help with the nu-
definitely realized, for example, in a dene sense of the merical simulation. We are grateful to S. Gredeskul, V. S.
conditionNA3>1) medium and for an elastic mechanism of Bagnato, C. M. Bowden, R. W. Boyd, S. Dutra, A. M.
polarizability. On this assumption it is possible to show theDykhne, D. A. Kirzhnitz, V. L. Pokrovsky, and S. Zlatev for
validity of the extinction theorem, Maxwell equations, andtheir interest in the paper and for valuable discussions. Fi-
calculate the macroscopic optical properties of the mediummancial support through the CNPqg foundation, Brazil, is
It is interesting that even an elementary model of a weaklygratefully acknowledged.

rarefied medium demonstates not only quantitative
properties—such as the modification of the LL formula—but
also some qualitative characteristics which are evident from
the example of gaslike and jellylike media.

When the problem of local field factors is solved, the
influence of fluctuations inside of the Lorentz cavity must be
taken_ Into account. In Fhe case of the elastic mechan_lsm om any electric-dipole, electric-quadrupole, or magnetic-
polar|zab|'l|ty their contribution takes the form of corrections, dipole radiator may be written in the form
whereas in some other cases, for example, for the orienta-
tional mechanizm of the polarizability, they play a predomi- A .
nant role. Earlier, for condensed matter, the allowance of the U(r)=L(V)G(rj—r)f(rj), (A1)
fluctuations was made in the form of renormalization of only
the rea] part of thg polarizability, so that the microfields andwhereI:(Vo is a definite differential operator acting on
macrofields remained related by a pure real fa¢see, for i ~
example [22]). Now we see that when the discreteness of acoordmates of the LS center afids a tensor or vector of the

medium is properly taken into account the fluctuations lead/0lume densities of the electric-dipole, electric-quadrupole,

to an appearance of the imaginary part of this factor. There®" magnetic-dipole moments. Let us split, mentally, each of

fore, an absorption would arise in the fluctuating medium,the elementary radiators into eight smaller ones with the

which otherwise would be considered as a transparent ong&Me total multipole moment as an initial “unsplit” radiator.

As is evident, the physical origin of the absorption is scat-/ "€ displacements of the new elementary radiators must be
tering of the light. The developed approach permits calculachoSen in such a way that while the geometry of the new
tion of the integral intensity of scattering, depending on thdattice would remain intact, its Iattlce. constant woulq reduce

parametekb. It follows from Eq.(12a and the Appendix B PY @ factor of 2(see Fig. 1. Then, using the inequality

that the imaginary term- (kb)® in the local field factors will

be determined by the fluctuations of the total dipole moment R;=a>b, (A2)

of the LS. When the complex refractive index is calculated,
and hence the spatial distribution of the incident wave an,ne can calculate the field in the LS center. For this it is
polarizationP is known, then one can calculate the angular
distribution of the scattered radiation with the help of the
integrals in the right-hand parts of E¢) or Eq. (30).
As is known, in the case of a regular medium the appear-

ance of the Bragg scattering takes place only after the pa- - -~ ~ 1 4 ~ - . 1 92
rameterkb exceeds a certain value. Our results for a weakly U=LGf+ 8 ¢ LGfE (bj)st 16 900 ar

. . . . r] S i’ ﬁ(rj)sa(r])t
rarefied medium may be considered as the first step to the
analytic description of the photonic band gap structures. For A~ - .
an irregular medium a scattering effect occurs in a gradual XLGfZ (bj)s(bjr )it (A3)
manner23]. This fact justifies, to some extent, an approach J
using the direct substitutiofiL2] of the RD (imaginary part .
of the polarizability into the LL formula under consideration Here |’ takes on values from 1 to 8 ang+b;, are radius
of irregular (but in no circumstances regulamedia. It is  vectors of the splited oscillators. In EGA3) the summation
groundless, of course, to expect exact numerical agreemeist implied over all indicess andt. As known, any lattice
with the experimental data in all cases with the importantconstituted from identical radiators has a center of symmetry
exception of the ideal gas mediufi0,11. The present and due to this fact the second term in the right-hand part of
theory has no difficulty in explaining the irregular fluctuating Eq. (A3) turns to zero. Therefore, performing the summation
media: this problem may be treated with the help of theoverj in both of the part§A3), one obtains
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APPENDIX A:
THE CALCULATION OF THE DIFFERENCE
BETWEEN INTEGRAL AND SUM OUTSIDE THE LS

The electric or magnetic fieldéhere designated as)

necessary to substitute into E@1) the vectorr;+b;, and
expand this expression into Taylor series&p:f:
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~ ~ 1 A 1 -
> LGef== >, WLGT b= 2 (b))%, (A6b)
1 22 we 7 et whereas for a cubic lattice we obtain
8 (1T 1
(Ada) (P)st=579st- (A7)
where Tensorsy, and éb take the form
-, 1 R . . T
(P")si= 157 2 (Bj)s(by)e (A4b) (Yoo)st= — g Bst. (A8a)
J'!
and E}l) denotes the summation over the new lattice. By Yoo B= _g B (A8D)

reiterating this procedund times we come to the conclusion
that the difference between an initial sum and a sum with the
b/2\ period is equal to a geometrical progression, each term - _m } S S 58 A8
of which is proportional td?. This progression may be cal- (Y2)stpa=35 | 3 Psa%pt™ Fstdpg (A8c)
culated directly, and as a result, we obtain an explicit expres-

sion for the difference between the initial sum and such a . R -
sum in the limiting cas&b—0, i.e., the integral over the LS Yo2:(VVP)= 3013 AP-VV.PJ, (A8d)
exterior
(o) stpe= e Osqd (A8e)
aA A DI ~ A A N b1 = an ) e
D LGf:f [LGE—b%d:V'V')[GFId3", stPd 30 TeaIP
j#1 o
(A5a)
Eni(VQ)= V Q, (A8f)
where E=f/b3 is the volume density of the quantitl,®
=(4/3)D’. - m 2
Owing to the presence of the operalof, a second vol- (§b3)stqul_4_2 Jst0pkdqi 5 S519tp0qk |,  (A8Q)

ume integral may be transformed into the surface integrals
over the outer boundary and the LS surface. The latter

can be calculated directly and gives rise to the tei?rgand 5 (VVVQ)_ (VV v Q_ 5 AV Q) (A8h)
H, [see Eqgs(5) and (30)]. By applying this procedure to

electric-dipole, electric-quadrupole, and magnetic-dipole me- A . ASi
dia we come to the integral equatiof® and (30) with the (7bM1)Stp_1_8 Estp: (A8I)
following tensorsy, :
R - T > ,
8w Yle:(VM):EVXMa (A8))
Yoo=—= 15 (2Trd> CD) (A5b)

~ ™

A 8 . ~ ~ (ngZ)stqu: 30 5pq£stk: (A8K)
(ybz)stpq:ﬁ[G(Q))stﬁpq"'3(®)sq5tp_4(q))tp53q

Eomz: (VVQ)———VXV Q. (A8I)

A 4 ~
+6(D)pqdal + ¢ (daqfip=50udpe) Tr,
(A5C) Eomo:Q=0. (A8M)

For a gaslike random medium in the first order approxima-
= 4 6 tion in a gas parametétb® we have the same probability of
8stpTrq)_ a 8stq(q))qp - (A5d) - | .
3 finding a particle at any point of the space. The sole excep-
o _ tion is a sphere of the radius around the given radiator
Due to rather an intricate character of the expressions fofhere this probability equal zero. After an ensemble averag-
tensorséy, we present them only for the case of a cubic latticeing the medium looks, from a viewpoint of a given radiator,

47
( 'bel)stp:?

(jellylike medium—see Eq.(A8). similar to a continuous one. Therefore, summation may be
In the case of an orthorombic lattice from E@\4) it replaced by an integration without any “splitting” procedure
follows at all, and the tensob must be equated to zero. Finally, for

~ a jellylike medium we have an uniform angular distribution
(D) st= D55, (A6a)  of the particles, but the distance between any two neighbor-
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ing particles is approximately equal to (unlike a gaslike Using the same method as in paper I, Appendix A, but keep-
medium where this distance may be as largél ad> b). It ing now the ((b)3 terms one may find the tenso@/s% for a
is evident that to average E€A7) over the orientations one |attice of any kind. Further, we again take into account the
should rotate each of the splitted cell in an uniform way.existence of a center of symmetry of the medium so that any
Owing to such an averaging, the tensbrdoes not depend lattice sum constructed from terms with odd number of fac-

on the or|2entat|on .e. it lurns into a scalar which must be,rg of the components of the unit vectoturns to zero. As
with the b= accuracy, the same as for a cubic lattice. a result. we have

APPENDIX B:

CALCULATION OF THE TENSORS y AND £ ( A'}’l)stp: ( A')’S)stqu: (‘fo)stp: (gz)stqum: ( A'}’M)st: (&Mz)stpq

Since we are breaking down with thké— 0 approxima- -0 (B33
tion, we must start from the explicit expressions for the elec- ’
tric E,, Eq, En and magnetitd,, Hy, H,, fields of dipole
(p), quadrupole ), and magnetic-dipolent) elementary

radiators: (Yo)s=b3>, 3n5nt3 5S‘+k2 5St_RnSnt
) _glkR 5
Ep=VXVXP & + 3 1(Kb)*(N,~1), (B3b)
) 1TKR L
=€ —gs[3n(n-p)—- p]
. b 3ngnnyng—nin, 48
KoL Fdsp=y 2 — 1 (B30
+ 5 [P—n(n-p)l}, (B1a
N . elkRr . 2NN, 8sq— 5NN N, k2
quvxvxv'q? (fl)stquSbaz —r SqRS st q_Entnpﬁsq )
B e | (B3d)
=e* 3——z—[5n(n-n-q)—2n-q]
K2 L ikd _ . . R - b 2nNNgNKSsm—SNgN{NNGNKN
+355 [A-G-20(7-0-9)]+ o [RE-A-@)-f-a)f,  (Espanr 3 2 R '
(B3¢
(B1b)
- . elkR L —ikR . . 1 K°R
E=1kVXm ?——lke'kR — nxXm, (Blo (;Ml)stp:bgsme NN, §+7), (B3f)
_ _elkR o 1-jkR L .
Ho=—ikVxp —=ike*R ——nxp, (B2a 5
R R - 3 1 k
) (§Mo)stp:3b 8smpz NNt ﬁ""ﬁ ) (B3g)
ikR
=—ikVXV.q R
- N{NpNg
o 3(1-ikR)—(kR? . . 3 OnftllpMq. B3h
kR 3 Rl KR - a2 (£u2)sipak=7 Desm (B3h)
elkR - . . _ _
Ho=VXVXm-— Herens=(n)s, &smpis an antisymmetric unit tensor of the
R third rank andN,, is the total number of particles inside the
1 R L K2 LS. In _for_mulgs(B3f), (B3g), (B3h) summation over the in-
=glkR [3n(n-m)— m]+—[m n(n- m)] dexm is implied.
For a cubic lattice in a coordinate system of crystallo-
(B2c)  9graphic axes we have the tensors
where
— 2143 ; 3 _
ReR —F—F,, R=RIR (Yo)si=3 kbE +i(kb)*(N,—1)| 85, (B42)
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4 11 4 3 4
b (17309504850t 5 | 373 Ssqdipt 5 (5"~ 1) 8sispdig

(V2)sipg=5 2 = , (B4b)

2

5n—~1 . 3n-1 5, K
R 12R

- 3
(gl)stpq: bgz [(3 R3 +k 2R )5sq5tp+ 2

)(Sn;‘—l)astéspasq}, (B4o)

. b 1 1 7
(£9)stpakn™ 2 | 5~ 1+9n," = 6n,8) SSpidqm+ 2(— 2+ 21N, = 15n,8) SySpgdum+ 15 550"+ 5 N,

2 2
4 6 105 4
X(5st5pq5pk5pm+ 265t0spOskOgmt 5st55k55m5pq)+ (4—45n,"+ 35n, )5sk5tp5tq5tm+ -5+ - ny
77 5
- 7 Ny 5st55p53q55k5sm ) (B4d)
- b 1
(mdstip=3 esp R (B4o)
. b 1 , 3
(fMZ)stquZE 2 R (1-3n, )Sspkatq+§ (5ny _1)sspk5tq5tp . (B4f)

In this case tensoifMO is proportional to an antisymmetrical tensorso that its contraction with a symmetric quadrupole
moment tensor is equal zero.
For a random medium an ensemble averaging allows one to replace summation (B¥qs.(B4) by integration so that

- 47 2i
(Gols=g | K(@—b2)+ 5 k3<a3—b3>}6st, (852
2,4 2T, 1

b (72)stpq:? (a°—b?) 55t5pq_ § 5sq5tp ) (B5b)

2 2T 2 2
(gl)stpq:? k(b“—a )5sq5tpa (B5¢)

23 21, 22
b (fs)stqumZT (a“—b?) 5 5sm5tp6qk_ 5st5pk5qm ) (B5d)
R 27
bz( ')’Ml)stp:? (az_bz)sstpy (B5e)
203 2T 52 12

b (fMZ)stqu:? k“(a®—b )Sspk‘stq- (B5f)

In the case of a jellylike medium the splitting procedure leads to the twofold decrease of the “vacuum space” sizes around
thelth radiator, so that Eq$B5) remain true after the renormalizatitn—b/2. Note that, strictly sreaking, EqeA4) do not
hold true anymore for near of the LS center radiators, since for them paramiBteis not small. However, there is no sense
to improve an accuracy of calculations in E&3) since in the vicinity of the LS center the angular distribution function is
determined by the near-distant order and so depends on the concrete accepted model of thgforedidiscussion of this
problem, see Ref26)).
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APPENDIX C: FACTORING OF THE OPERATOR VxVx OUTSIDE THE INTEGRAL SIGN

In a manner similar to that addopted in I, Appendix B, and keepka){ terms, one can deduce the useful relations

3 . 3 . . A4x N
fo FGd® '=f V><FGd3r’—?a2(1+ika)V><F, (CY
8w (ka)? i(ka)®] . 4
VXJ VxFGd3r—f VXVUXEGEF+ o |14 o 25 a%(AF—VXVF), (C2)
- 3 2 3 * 15
s . (s . . A4x (ka)? 2 27
VXJ’ V><V><FGd3r:f V><V><V><FGd3r+? 1-— —§|(ka) V><F+Ea2AV><F (C3)
S .. (s A~ . Am (ka)? i(ka)*]. -
fo V-Fd3r=f V><V~FGd3r—? 1+ T3 & F——az[A(s F)+2VXV-F], (C4)

41
fo VXV. FGd?’r—j VXVXV-FG3+—

*
i [V-(7F+2F*)—3VTIF],

2

2
[1+ (ka)” (ka)

+(ka)q V- 2|3*—E Lo +2—a2[Av (11F +4F*)
2 2 105
—3AVTIF—6Y(V-V-F)], (C5)
|
s A s rivatives through these fields and densitiesQ, andM. By
3 )
VX L VXVXV-FGd applying the operatoV X VX to both parts of Eq(D1), we
find

3 ~ . 4 A~ A
=J VXVXVXV-FGd3r+?va.(F.H:*)

! vvaaG Gaé GV’ -E |d?r
el M M e o

27 (ka)?  (ka)®
K2 o LY a2
15 k[ O[“ > T3 v Wl ka? (ka)®
=e 1-ika— +i
o 2 6
XV-(F*—F)—A&:F] +£a2AV><V (F+F*). o
X|E+4m |5—V-Q+EV><|\7| }
(Co
- A -
Using the above equations one may perform the factoring —2m|1- 3 a’VXVX|P-V.Q+ K VXM
of the operatoiV X VX out of the integral sign, in Eq$5)
and (30). (D2)
APPENDIX D: CALCULATION OF THE INTEGRALS and a similar expression fdi. Keeping an accuracy up to
OF E AND H OVER THE LS SURFACE (k&) we come to the relations
One can calculate the integral over the surface of the LS 1 G JE _
taking into account the ternts*VVE: VXVXJ P E -G ——nGV’
- 9G ﬁé ’ " 27 ika H = i = AN 2 e
E —~—G ———nGV' E |d’,=4me* (1-ika)E G EVXM—Qn) s
a‘(1-ika . - R R -~ i R
+5 | =5 AE-VXVXE (DY) =E+4m P—V-Q+EV><M —27a?VxV
and a similar equation fdf. Then, by use of Eqg34) and + E P_ 1 .C X
(45) for macroscopic fields we may express their spatial de- 1 3 kaP 3 v-Q+ 3k VXM ©3)
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o1 (o X24+Y24Z72 1 d3 !
d3r!=_ d3r’__
R 3 Jo R 3 '

(E4)

1 (. 0G oH . R G
7@ \H>-—G———nGV'-H

XV X
va,, v v

0

t ([n-QXV'G]+G[nxV'-Q]+G[Pxn])|d? we can turn the last volume integral into the surface integral

. ) | .1 x
3 ¥ : ~ : 5] _ 37— g 2>
=H+4m| M+ VXV.Q— VXP 3 1”0 R T Lﬁr(m)xd re.  (EY
—ora?x Vx| |1+ ﬂ kalM For the case of a cubic cavity, EGE3) can be rewritten as
3
f f f XMdX dY dz
+IE 1V-(g—%VxlS (D4) “a)al)oa (XP+Y24+Z2)(TmE2
f f f XM~2dXdYdz
2 w2, 72\(+m=2)2
APPENDIX E: CUBIC LORENTZ CAVITY Tirm=2 ) o) o) 03+ YE 29
To simplify the calculations of the sungg, g, andg, f f dydZ
for a cubic lattice medium it is convenient to change the I+m 2 )_al)_a(@%+Y2+z2)tm=2)2

form of the Lorentz cavity, i.e., to be exact, pass to the cavity
of a cubic form. As is evident from Appendixes A and B, for
finding the difference between the macroscopic and localjgrey= y—y’', Z=z—7', and 2 is the size of the cavity.
fields it is necessary to calculate three volume integrals of th%ormula(ES) turns into the relation

typef(n”‘/R)d3 wherem=0,4,6, and three surface inte-

gralsf(a/av)(nﬂ"/R)dzfg,Werea/av is the derivative in the f f f dXdydZ
o) o) e (X2+ Y2422
f j dydz E
_al_a (@Z¥YZy T2 (E7)

direction of the inward normal. For such a calculation let us
start from the equality
These surface integrals can be calculated directly by use of
the polar coordinates in théZ plane. As a result, we obtain
X=x—x' (E1) the necessary expressions

(E6)

J Xm—l Xm—2 m
o gz =~ (M=1) prm—z T (1+m=2) o,

- o1
and then integrate both parts of E&1) overr’. After that J R d®'=3a?B,=2[6In(v2+3)—=]a?, (E8a
turn the volume integral on the left-hand part into the surface 0
integral 4
o Ny - 2 5
f Fd3r'=a2 Bi—3 Bs|=2 2In(\/2+3)—§ﬂ-a2,
o g XMl m-1 ) 0
fo g Wdaf —L RIFm—2 (ny)yd’r,, (E2) (E8b)
. _ _ s nb 2 2
where n, is the unit vector of the inward normal to the f R d3'=a? B, 173 Bg_g Bs
boundaryo of the volume of integration. As a result, we find 0
o XM m—1 o XM-2 =2 2In(ﬂ+3)—E 377-+i a?
f ¥ = f 3 5 V3]
0 RH—m |[+m—2 0 Rl+m 2
1 xm-1 (E8C)
+ (n )yd? r
I+m—2 f RI*m-2
m f 9L o —eBy—dm, (E93
(E3) Jdv R
By repetition of such a procedure for the first right-hand term f Z X d2 —2(5B,—4Bs+10D,)
of Eqg. (E3) we obtain, finally, for any value ah a set of the dv R
surface integrals and one volume integfg(d3F’/R'). By 518 265
applying the formula(E3) to the casem=2 and using the - (__ - 77>, (E9b)
obvious equality 3\v3 3
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_ 1 (19187 2293 o
—1—5 W—TW ’ ( C)
where
. _4Jlfl dudy
=4, Jo @R
2 w3 Coi (m-3)/2
“m-2 W_ZJO 1+cos§) dg}’
(E10a
au
B,=2(2 |n(f2+3)—§}, (E10b
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